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In this study, an application of support vector machine (SVM) for early fault detection in a Benson type 
once-through boiler is presented. Thermal conditions disruption inside the boiler during load changes is 
the  main  reason  for  level  changes  of  the  start-up  vessel.  Because  of  complexity  of  the  system’s  
dynamics, first the effective variables on increasing the level of start-up vessel were identified based on 
experimental data from a power plant unit. Then, the dimension of input variables was reduced by 
selecting appropriate features. Experimental results show that the hotwell surfaces’ temperature could 
be considered as the most appropriate indicator for steam quality deterioration. By comparing the 
extracted features from healthy and unhealthy conditions, appropriate fault model was developed using 
SVM with radial basis function (RBF) as the kernel. The performance of fault detection system was 
evaluated with respect to the similar faults at two different time periods that happen in a steam power 
plant. The obtained results show the accuracy and feasibility of the proposed approach in early detection 
of faults during the unit’s load variations. Advantage of the proposed technique is the prevention of 
false alarm in power plants’ boilers as load changes.   
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Fig. 1 Flow chart of fault detection process  
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Table 2 The selected features for fault detection  
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Fig.  3 Variation in the vessel level and extracted features in training 
section 
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Fig. 4 Data classification by Support Vector Machine.     
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Fig. 6 Start-up vessel level variations data for training and fault 
classification 
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Table 3 Details of samples used at the train and test 
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Fig. 7 Fault detection system output and start-up vessel during test 
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